欢迎访问亚洲华夏彩票_华夏彩票娱乐-Welcome,加入VIP即可下载:加入 收藏本站| 关于我们| 联系我们
全国统一服务热线
400-900-0000
当前位置:首页 > 资讯中心 > 公司动态 >

车轮制动器的根基布局

文章出处:admin 人气:发表时间:2019-04-03 14:35

  可选中1个或多个下面的环节词,搜刮相关材料。也可间接点“搜刮材料”搜刮整个问题。

  展开全数汽车上用以使外界(次要是路面)在汽车某些部门(次要是车轮)施加必然的力,从而对其进行必然程度的强制制动的一系列特地安装统称为制动系统。其感化是:使行驶中的汽车按照驾驶员的要求进行强制减速以至泊车;使已停驶的汽车在各类道路前提下(包罗在坡道上)不变驻车;使下坡行驶的汽车速度连结不变。

  对汽车起制动感化的只能是感化在汽车上且标的目的与汽车行驶标的目的相反的外力,而这些外力的大小都是随机的、不成节制的,因而汽车上必需装设一系列特地安装以实现上述功能。

  (1) 按制动系统的感化 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必需具备的。

  (2) 制动把持能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为独一制动能源的制动系统称为人力制动系统;完端赖由策动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和策动灵活力进行制动的制动系统称为伺服制动系统或助力制动系统。

  (3) 按制动能量的传输体例 制动系统可分为机械式、亚洲华夏彩票液压式、气压式、电磁式等。同时采用两种以上传能体例的制动系称为组合式制动系统。

  制动系统的一般工作道理是,操纵与车身(或车架)相连的非扭转元件和与车轮(或传动轴)相连的扭转元件之间的彼此摩擦来阻遏车轮的动弹或动弹的趋向。

  可用右图所示的一种简单的液压制动系统示企图来申明制动系统的工作道理。一个以内圆面为工作概况的金属制动鼓固定在车轮轮毂上,随车轮一同扭转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来把持。

  当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的感化下将制动蹄片压向制动鼓,使制动鼓减小动弹速度,或连结不动。

  1.制动踏板 2.推杆 3.主缸活塞 4.制动主缸 5.油管 6.制动轮缸 7.轮缸活塞 8.制动鼓 9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动蹄回位弹簧

  右图给出了一种轿车典型制动系统的构成示企图,能够看出,制动系同一般由制动把持机构和制动器两个次要部门构成。

  (1) 制动把持机构 发生制动动作、节制制动结果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。

  (2) 制动器 发生障碍车辆的活动或活动趋向的力(制动力)的部件。汽车上常用的制动器都是操纵固定元件与扭转元件工作概况的摩擦而发生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种布局型式。

  一般制动器都是通过此中的固定元件对扭转元件施加制动力矩,使后者的扭转角速度降低,同时依托车轮与地面的附着感化,产活路面临车轮的制动力以使汽车减速。凡操纵固定元件与扭转元件工作概况的摩擦而发生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器可分为鼓式和盘式两大类。

  扭转元件固装在车轮或半轴上,即制动力矩间接别离感化于两侧车轮上的制动器称为车轮制动器。扭转元件固装在传动系的传动轴上,其制动力矩颠末驱动桥再分派到两侧车轮上的制动器称为地方制动器。

  增势与减势感化 右图为领从蹄式制动器示企图,设汽车前进时制动鼓扭转标的目的(这称为制动鼓正向扭转)如图中箭头所示。沿箭头标的目的看去,制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力感化于其后端,因此该制动蹄张开时的扭转标的目的与制动鼓的扭转标的目的不异。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的扭转标的目的与制动鼓的扭转标的目的相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向扭转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向扭转和反向扭转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。

  如右图,制动时两活塞施加的促动力是相等的。制动时,领蹄1和从蹄2在促动力FS的感化下,别离绕各自的支承点3和4扭转到紧压在制动鼓5上。扭转着的制动鼓即对两制动蹄别离感化着法向反力N1和N2,以及响应的切向反力T1和T2,两蹄上的这些力别离为各自的支点3和4的支点反力Sl和S2所均衡。可见,领蹄上的切向合力Tl所形成的绕支点3的力矩与促动力FS所形成的绕统一支点的力矩是同向的。所以力T1的感化成果是使领蹄1在制动鼓上压得更紧从而力T1也更大。这表白领蹄具有“增势”感化。相反,从蹄具有“减势”感化。故二制动蹄对制动鼓所施加的制动力矩不相等。倒车制动时,虽然蹄2变成领蹄,蹄1变成从蹄,但整个制动器的制动效能仍是同前进制动时一样。

  在领从式制动器中,两制动蹄对制动鼓感化力N1’和N2’的大小是不相等的,因而在制动过程中对制动鼓发生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不克不及互相均衡的制动器称为非均衡式制动器。

  在制动鼓正向扭转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其布局示企图如右图所示。

  双领蹄式制动器与领从蹄式制动器在布局前次要有两点不不异,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的安插是核心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的安插是轴对称安插的。

  无论是前进制动仍是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图5-42是其布局示企图器。与领从蹄式制动器比拟,双向双领蹄式制动器在布局上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两头都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,并且既按轴对称、又按核心对称安插。

  右图是一种双向双领蹄式制动器的具体布局。在前进制动时,所有的轮缸活塞8都在液压感化下向外挪动,将两制动蹄6和11压靠到制动鼓1上。在制动鼓的摩擦力矩感化下,两蹄都绕车轮核心O朝箭头所示的车轮扭转标的目的动弹,将两轮缸活塞外端的支座7推回,直到顶靠到轮缸端面为止。此时两轮缸的支座7成为制动蹄的支点,制动器的工作环境便同图5-41所示的制动器一样。

  倒车制动时,摩擦力矩的标的目的相反,使两制动蹄绕车轮核心O逆箭头标的目的转过一个角度,将可调支座10连同调整螺母9一路推回原位,于是两个支座10便成为蹄的新支承点。如许,每个制动蹄的支点和促动力感化点的位置都与前进制动时相反,其制动效能同前进制动时完全一样。

  前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其布局示企图见图5-44。这种制动器与双领蹄式制动器布局很类似,二者的差别只在于固定元件与扭转元件的相对活动标的目的分歧。虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有优良的制动效能不变性。

  双领蹄、双向双领蹄、双从蹄式制动器的固定元件安插都是核心对称的。若是间隙调整准确,则其制动鼓所受两蹄施加的两个法向合力能互相均衡,不会对轮毂轴承形成附加径向载荷。因而,这三种制动器都属于均衡式制动器。

  单向自增力式制动器的布局道理见右图。第一制动蹄1和第二制动蹄2的下端别离浮支在浮动的顶杆6的两头。

  汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。第一蹄是领蹄,而且在各力感化下处于均衡形态。顶杆6是浮动的,将与力S1大小相等、标的目的相反的促动力FS2施于第二蹄。故第二蹄也是领蹄。感化在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,构成第二蹄促动力FS2。对制动蹄1进行受力阐发可知,FS2FS1。此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。因而,第二蹄的制动力矩必然大于第一蹄的制动力矩。倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动感化。

  1.第一制动蹄 2. 支承销 3. 制动鼓 4. 第二制动蹄 5. 可调顶杆体 6.制动轮缸

  右图为一种单向自增力式制动器的具体布局。第一蹄1和第二蹄6的上端被各自的回位弹簧2撮合,并以铆于腹板上端两侧的夹板3的内凹弧面支靠着支承销4。两蹄的下端别离浮支在可调顶杆两头的直槽底面上,并用弹簧8拉紧。受法向力较大的第二蹄摩擦片的面积做得比第一蹄的大,使两蹄的单元压力附近。

  在制动鼓尺寸和摩擦系数不异的前提下,单向自增力式制动器的前进制动效能不只高于领从蹄式制动器,并且高于双领蹄式制动器。倒车时整个制动器的制动效能比双从蹄式制动器的效能还低。

  1.第一制动蹄 2.制动蹄回位弹簧 3.夹板 4.支承销 5.制动鼓 6.第二制动蹄 7.可调顶杆体 8.拉紧弹簧 9.调整螺钉 10.顶杆套 11.制动轮

  双向自增力式制动器的布局道理如图5-47所示。其特点是制动鼓正向和反向扭转时均能借蹄鼓间的摩擦起自增力感化。它的布局分歧于单向自增力式之处次要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。制动鼓正向(如箭头所示)扭转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向扭转时则环境相反。由图可见,在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S>FS。考虑到汽车前进制动的机遇远多于倒车制动,且前进制动时制动器工作负荷也弘远于倒车制动,故后蹄3的摩擦全面积做得较大。

  右图所示的制动器即属于双向自增力式制动器。不制动时,两制动蹄和的上端在回位弹簧的感化下浮支在支承销上,两制动蹄的下端在拉簧的感化下浮支在浮动的顶杆两头的凹槽中。汽车前进制动时,制动轮缸(图中未画出)的两活塞向两头顶出,使前后制动蹄分开支承销并压紧到制动鼓上,于是扭转着的制动鼓与两制动蹄之间发生摩擦感化。因为顶杆是浮动的,前后制动蹄及顶杆沿制动鼓的扭转标的目的转过一个角度,直到后制动蹄的上端再次压到支承销上。此时制动轮缸促动力进一步增大。因为从蹄受顶杆的促动力大于轮缸的促动力,从蹄上端不会分开支承销。汽车倒车制动时,制动器的工作环境与上述相反。

  目前,所有国产汽车及部额外国汽车的气压制动系统中,都采用凸轮促动的车轮制动器,并且大多设想成领从蹄式。

  右图为一凸轮式前轮制动器。制动时,制动调整臂在制动气室6的推杆感化下,带动凸轮轴动弹,使得两制动蹄压靠到制动鼓上而制动。因为凸轮轮廓的核心对称性及两蹄布局和安装的轴对称性,凸轮动弹所惹起的两蹄上响应点的位移必然相等。

  这种由轴线固定的凸轮促动的领从蹄式制动器是一种等位移式制动器,制动鼓对制动蹄的摩擦使得领蹄端部力求分开制动凸轮,从蹄端部愈加靠紧凸轮。因而,虽然领蹄有助势感化,从蹄有减势感化,但对等位移式制动器而言,恰是这一不同使得制动效能高的领蹄的促动力小于制动效能低的从蹄的促动力,从而使得两蹄的制动力矩相等。

  楔式制动器中两蹄的安插能够是领从蹄式。作为制动蹄促动件的制动楔本身的促动安装能够是机械式、液压式或气压式。

  两制动蹄端部的圆弧面别离浮支在柱塞3和柱塞6的外端面直槽底面上。柱塞3和6的内端面都是斜面,与支于隔架5两边槽内的滚轮4接触。制动时,智能空压机轮缸活塞15在液压感化下推使制动楔13向内挪动。后者又使二滚轮一面沿柱塞斜面向内滚动,一面推使二柱塞3和6在制动底板7的孔中外移必然距离,从而使制动蹄压靠到制动鼓上。轮缸液压一旦撤消,这一系列零件即在制动蹄回位弹簧的感化下各自回位。导向销1和10用以防止两柱塞动弹。

  以上引见的各类鼓式制动器各有益弊。就制动效能而言,在根基布局参数和轮缸工作压力不异的前提下,自增力式制动器因为对摩擦助势感化操纵得最为充实而居首位,以下顺次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不不变的要素,随制动鼓和摩擦片的材料、温度和概况情况(如能否沾水、沾油,能否有烧结现象等)的分歧可在很大范畴内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因此其效能的热不变性最差。

  在制动过程中,自增力式制动器制动力矩的增加在某些环境下显得过于急速。双向自增力式制动器多用于轿车后轮,缘由之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最优良的效能不变性,因此仍是有少数华贵轿车为包管制动靠得住性而采用(例如英国女王牌轿车)。领从蹄制动器成长较早,其效能及效能不变性均居于中游,且有布局较简单等长处,故目前仍相当普遍地用于各类汽车。

  盘式制动器摩擦副中的扭转元件是以端面工作的金属圆盘,被称为制动盘。其固定元件则有着多种布局型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板构成的制动块,每个制动器中有2~4个。这些制动块及其促动安装都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳构成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全数工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。钳盘式制动器过去只用作地方制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只要少数汽车(次要是重型汽车)采用为车轮制动器。这里只引见钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。

  定钳盘式制动器的布局示企图见右图。跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不克不及扭转也不克不及沿制动盘轴线标的目的挪动,其内的两个活塞2别离位于制动盘1的两侧。制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定毗连的制动盘1,从而发生制动。

  这种制动器具有着以下错误谬误:油缸较多,使制动钳布局复杂;油缸分置于制动盘两侧,必需用逾越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和逾越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必需加装一个机械促动的驻车制动钳。

  右图所示为浮钳盘式制动器示企图,制动钳体2通过导向销6与车桥7相连,能够相对于制动盘1轴向挪动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。制动时,液压油通过进油口5进入制动油缸,鞭策活塞4及其上的摩擦块向右挪动,并压到制动盘上,并使得油缸连同制动钳体全体沿销钉向左挪动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。

  与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,并且制动液受热汽化的机遇较少。此外,浮钳盘式制动器在兼充行车和驻车制动器的环境下,只须外行车制动钳油缸附近加装一些用以鞭策油缸活塞的驻车制动机械传动零件即可。故自70年代以来,浮钳盘式制动器逐步代替了定钳盘式制动器。

  盘式制动器与鼓式制动器比拟,有以下长处:一般无摩擦助势感化,因此制动器效能受摩擦系数的影响较小,即效能较不变;浸水后效能降低较少,并且只须经一两次制动即可恢复一般;在输出制动力矩不异的环境下,尺寸和质量一般较小;制动盘沿厚度标的目的的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙较着添加而导致制动踏板行程过大;较容易实现间隙主动调整,其他调养补缀功课也较简洁。对于钳盘式制动器而言,由于制动盘外露,还有散热优良的长处。盘式制动器不足之处是效能较低,故用于液压制动系统时所需制动促动管路压力较高,一般要用伺服安装。

  目前,盘式制动器已普遍使用于轿车,但除了在一些高机能轿车上用于全数车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器共同,以期汽车有较高的制动时的标的目的不变性。在货车上,盘式制动器也有采用,但离普及还有相当距离。

  按在汽车上安装位置的分歧,驻车制动安装分地方驻车制动安装和车轮驻车制动安装两类。前者的制动器安装在传动轴上,称为地方制动器;后者和行车制动安装共用一套制动器,布局简单紧凑,已在轿车上获得遍及使用。

  右图为一盘鼓组合式制动器。这种制动器将一个作行车制动器的盘式制动器和一个作驻车制动器的鼓式制动器组合在一路。双感化制动盘2的外缘盘作盘式制动器的制动盘,两头的鼓部作鼓式制动器的制动鼓。

  进行驻车制动时,将驾驶室中的手动驻车制动把持杆拉到制动位置,经一些列杠杆和拉绳传动,将驻车制动杠杆的下端向前拉,使之绕平头销动弹,其两头支点鞭策制动推杆左移,将前制动蹄推向制动鼓。待前制动蹄压靠到制动鼓上之后,推杆遏制挪动,此时制动杠杆绕两头支点继续动弹。于是制动杠杆的上端向右挪动,使后制动蹄压靠到制动鼓上,施以驻车制动。

  解除制动时,将驻车制动把持杆推回到不制动的位置,制动杠杆在卷绕在拉绳回位弹簧的感化下回位,同时制动蹄回位弹簧将两制动蹄撮合。

  3.顶杆组件 4.制动蹄 5.轴销 6.驻车制动推杆 7.推杆弹簧 8.拉绳及弹簧 9.制动衬片 10.驻车制动杠杆

  制动蹄在不工作的原始位置时,其摩擦片与制动鼓间应有合适的间隙,其设定值由汽车制造厂划定,一般在0.25~0.5mm之间。任何制动器摩擦副中的这一间隙(以下简称制动器间隙)若是过小,就不易包管完全解除制动,形成摩擦副拖磨;过大又将使制动踏板行程太长,致使驾驶员操作未便,也会推迟制动器起头起感化的时辰。但在制动器工作过程中,摩擦片的不竭磨损将导致制动器间隙逐步增大。环境严峻时,即便将制动踏板踩到下极限位置,也发生不了足够的制动力矩。目前,大大都轿车都装有制动器间隙自调安装,也有一些载货汽车仍采用手工调理。

  制动器间隙调整是汽车调养和补缀中的主要项目,按工作过程分歧,可分为一次调准式和阶跃式两种。

  右图是一种设在制动轮缸内的摩擦限位式间隙自调安装。用以限制不制动时制动蹄的内极限位置的限位摩擦环2,装在轮缸活塞3内端的环槽中,活塞上的环槽或螺旋槽的宽度大于限位摩擦环厚度。活塞相对于摩擦环的最大轴向位移量即为二者之间的间隙。间隙应等于在制动器间隙为设定的尺度值时施行完全制动所需的轮缸活塞行程。

  制动时,轮缸活塞外移,若制动器间隙因为各类缘由增大到跨越设定值,则活塞外移到0时,仍不克不及实现完全制动,但只需轮缸将活塞连同摩擦环继续推出,直到实现完全制动。如许,在解除制动时,制动蹄只能答复到活塞与处于新位置的限位摩擦环接触为止,即制动器间隙为设定值。

  一般,驻车制动系统的机械传动安装构成如右图所示。驻车制动系统与行车制动系统共用后轮制动器7。施行驻车制动时,驾驶员将驻车制动把持杆1向上扳起,通过均衡杠杆2将驻车制动把持缆绳3拉紧,促动两后轮制动器。因为棘爪的单向感化,棘爪与棘爪齿板啮合后,把持杆不克不及反转,驻车制动杆系能靠得住地被锁定在制动位置。欲解除制动,须先将把持杆扳起少许,再压下把持杆端头的压杆按钮8,通过棘爪压杆使棘爪分开棘爪齿板。然后将把持杆向下推到解除制动位置。使棘爪得以将整个驻车机械制动杆系锁止在解除制动位置。驻车制动系统必需靠得住地包管汽车在原地停驻,这一点只要用机械锁止方式才能实现,因而驻车制动系统多用机械式传动安装。

  1.把持杆 2.均衡杠杆 3.拉绳 4.拉绳调整接头 5.拉绳支架 6.拉绳固定夹 7.制动器

  目前,轿车的行车制动系统都采用了液压传动安装,次要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等构成,见右图。主缸与轮缸间的毗连油管除用金属管(铜管)外,还采用特制的橡胶制动软管。各液压元件之间及各段油管之间还有各类管接头。制动前,液压系统中充满特地配制的制动液。

  踩下制动踏板4,制动主缸5将制动液压入制动轮缸6和制动钳2,将制动块推向制动鼓和制动盘。在制动器间隙消逝并起头发生制动力矩时,液压与踏板力方能继续增加直到完全制动。此过程中,因为在液压感化下,油管的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都能够继续挪动一段距离。铺开踏板,制动蹄和轮缸活塞在回位弹簧感化下回位,将制动液压回主缸。

  目前,轿车上普遍装用真空助力器作为制动助力器,操纵策动机喉管处的真空度来协助驾驶员把持制动踏板。按照真空助力膜片的几多,真空助力器分为单膜片式和串联膜片式两种。

  1. 真空助力器不工作时(图a),弹簧15将推杆连同柱塞18推到后极限位置(即线则被弹簧压紧在空气阀座上10(即空气阀封闭)。伺服气室前、后腔经通道A、节制阀腔和通道B互相连通,并与空气隔断。在策动机起头工作、且真空单向阀被吸开后,伺服气室摆布两腔内都发生必然的线(a) 真空助力器工作道理图(未工作时)

  图D-ZD-20线. 当制动踏板踩下时,开初气室膜片座8固定不动,来自踏板机构的把持力鞭策节制阀推杆12和节制阀柱塞18相对于膜片座8前移。当柱塞与橡胶反感化盘7之间的间隙消弭后,把持力便经反感化盘7传给制动主缸推杆2(如下图)。同时,橡胶阀门9伴同节制阀柱塞前移,直到与膜片座8上的真空阀座接触为止。此时,伺服气室前后腔隔断。

  3. 节制阀推杆12继续鞭策节制阀柱塞前移,到其上的空气阀座10分开橡胶阀门9必然距离。外界空气充入伺服气室后腔(如下图),使其真空度降低。在此过程中,膜片20与阀座也不竭前移,直到阀门从头与空气阀座接触为止。因而在任何一个均衡形态下,伺服气室后腔中的不变真空度与踏板行程成递增函数关系。

  以策动机的动力驱动空气压缩机作为制动器制动的独一能源,而驾驶员的体力仅作为节制能源的制动系统称之为气压制动系统。一般装载质量在8000kg以上的载货汽车和大客车都利用这种制动安装。

  右图为一汽车气压制动系统示企图。由策动机驱动的空气压缩机(以下简称空压机)1将压缩空气经单向阀4起首输入湿储气罐6,压缩空气在湿储气罐内冷却并进行秒速赛车开奖官网

此文关键字:车轮,制动器,的,根基,布局,可,选中,1个,或,

同类文章排行

最新资讯文章

您的浏览历史

    正在加载...